
The HWSim Simulation Language
Reference Manual

Sean Halle

May 19, 2012

Contents

1 Introduction and Overview 5
1.1 The Philosophy of the Language . 5
1.2 Overview of Usage of the Language . 5

2 Commands and Usage 7
2.1 Configuration File . 7
2.2 Netlist Creation . 7
2.3 Activities, Behavior, Timing, and Communications 10

2.3.1 ActivityType and ActivityInst . 10
2.3.2 Behavior Functions and Ending Activities 11
2.3.3 Activity Timing Functions . 11
2.3.4 Calculating the time-in-flight of a communication path 12

3

1 Introduction and Overview

1.1 The Philosophy of the Language

A simulator consists of two parts: behavior logic, and a separate underlying implemen-
tation of simulated time. Many simulators tightly integrate the behavior logic with the
code of the simulator itself.

In contrast, HWSim takes the approach of providing a separate language that imple-
ments simulated time. One creates elements, each of which has an independent timeline,
and sends communications between them. The communications trigger behaviors in the
elements, which then send more communications.

What HWSim provides is assurance that the memory image of the Host machine
executing the behavior is always consistent with the memory image that should exist
due to the simulated-time ordering. This is valuable on multi-core machines, as it allows
full usage of the parallel Host hardware.

Providing such consistency is tricky because, in general, a given core takes turns
executing behavior of different elements. If not carefully controlled, behavior will be
executed in a different order in physical time than in simulated time. Such out of
order execution can cause different results to be calculated on the Host than should be
calculated by the simulated hardware.

HWSim tracks the start and end of simulated-time activities and implements an al-
gorithm to ensure the state of each element stays consistent with the simulated-time
order.

1.2 Overview of Usage of the Language

Elements, and the connections between them, are specified in a netlist. Behavior and
timing of the elements are provided as functions, which are attached to the elements. A
behavior can call an HWSim construct to send a communication on an out-port. The
out-port connects to the in-port of another element. The destination in-port has an
activity-type attached, which contains pointers to the behavior and timing functions.
Reception of the communication then triggers the functions in the destination element.

The language is supplied as a library, divided into calls for a main program to use,
and calls for use within the behavior and timing functions.

The main program is currently (as of May 2012) charged with constructing the netlist
and passing it to HWSim. It is also charged with handling results, although services are
supplied to transform HWSim results into formats for various visualizers like Paraver.

The hardware behavior and timing functions are collected into a separate directory

5

1 Introduction and Overview

and pointed to by the netlist. The behavior and timing functions for a particular kind
of element are grouped in informal ways, such as defining them in the same file, or using
naming schemes. The functions are attached to elements inside the netlist creator.

The hardware behavior is defined separately, then referred to by a netlist. The netlist
is created within a main C program, then passed to an HWSim call that initiates the
simulation. The main thread suspends until simulation completes, then calls HWSim
services to transform the results to the form for the visualizers.

6

2 Commands and Usage

This chapter gives precise information about the various calls available in HWSim, and
how to use them. As of May 2012, we take the shortcut of defining these through an
example of their usage. The example is a circuit with two elements that are cross-
coupled. The output from one goes to the input of the other. One of them is connected
to the reset signal, triggers it’s behavior, which is simply to send a communication on
its outport. That triggers the same behavior in the other, and so on, back and forth.

2.1 Configuration File

The configuration file states the amount of simulated time and the name of the file to
save the generated traces in.

int, SimulationEndTime, 100

string, resultTraceFileName,
data_files/HWSim_results/Ping_Pong_results/test_config_results.txt

2.2 Netlist Creation

Here is an example of netlist creation:
The circuit has two elements, each with one input port, one output port, and a single

activity-type. The elements are cross-coupled, so output port of one connects to input
port of the other. The input port has the activity-type attached as its trigger. The activ-
ity is empty, and just sends a NULL message on the output port. The activity’s duration
in simulated time and the resulting communication’s flight duration in simulated time
are both constants.

Note that HWSimElem data type is generic. An elem is specialized by declaring
inports and outports, and by connecting activity types to in-ports. Behavior is attached
to an element by attaching activity types to in-ports of the element.

First, here is the top-level function that creates and returns the netlist structure:

HWSimNetlist *
createPingPongNetlist()
{ HWSimNetlist *netlist;

HWSimElem **elems;
HWSimActivityType **activityTypes;
HWSimCommPath **commPaths;

7

2 Commands and Usage

int32 numElems, numActivityTypes, numCommPaths;

The first thing to do is create the netlist structure, which holds three things: element
structs, activity type structs, and communication path structs. It also has two collections
of pointers to the traces collected during the run, but these are handled internally by
HWSim.

netlist = malloc(sizeof(HWSimNetlist));

numElems = 2;
elems = malloc(numElems * sizeof(HWSimElem *));

numCommPaths = 2;
commPaths = malloc(numCommPaths * sizeof(HWSimCommPath *));

numActivityTypes = 1;
activityTypes = malloc(numActivityTypes * sizeof(HWSimActivityType *));

netlist->numElems = numElems;
netlist->elems = elems;
netlist->numCommPaths = numCommPaths;
netlist->commPaths = commPaths;
netlist->numActivityTypes = numActivityTypes;
netlist->activityTypes = activityTypes;

Now, create the activity types. During the run, an activity instance is created each
time a communication arrives on an in-port. The activity instance is a data structure
that points to the activity type. The activity type holds the pointers to the behavior
and timing functions.

//have to create activity types before create elements
//PING_PONG_ACTIVITY is just a #define for readability

netlist->activityTypes[PING_PONG_ACTIVITY] = createPingPongActivityType();

Next, create the elements, and pass the netlist structure to the creator. It will take
pointers to activity types out of the netlist and place them into the in-ports of the
elements.

elems[0] = createAPingPongElem(netlist); //use activity types from netlist
elems[1] = createAPingPongElem(netlist);

Now, the reset in-port of one of the elements has to be set up to trigger an activity.
Every element has a reset in-port, but normally they are set to NULL activity type.
Here, we want only one of the two elements to have an activity triggered when the reset
signal is sent to start the simulation.

Note that during initialization, all the elements become active, each with its own
timeline, but unless an activity is triggered in them they remain idle, with their timeline
suspended and not making progress. Only ones that have an activity type attached to
their reset in-port will begin to do something in simulated time when simulation starts.

//make reset trigger an action on one of the elements
elems[1]->inPorts[-1].triggeredActivityType =

netlist->activityTypes[PING_PONG_ACTIVITY];

8

2.2 Netlist Creation

Now, connect the elements together by creating commPath structures. A comm path
connects the out-port of one element to the in-port of another. A given port may have
many comm paths attached. However, an in-port has only one kind of activity type
attached, and all incoming communications fire that same activity. There are multiple
kinds of activity, including kinds that have no timing, and so can act as a dispatcher.
These end themselves with a continuation activity, which is chosen according to the code
in the behavior function. So, a commPath only connects an out port to an in port.

This code sets fixed timing on the comm paths. It also uses a macro for setting the
connections. The format is: sending elem-index, out-port, dest elem-index, in-port:

//elem 0, out-port 0 to elem 1, in-port 0
commPaths[0]= malloc(sizeof(HWSimCommPath));
setCommPathValuesTo(commPaths[0],0,0,1,0);
commPaths[0]->hasFixedTiming = TRUE;
commPaths[0]->fixedFlightTime = 10; //all time is stated in (integer) units

//elem 1, out-port 0 to elem 0, in-port 0
commPaths[1]= malloc(sizeof(HWSimCommPath));
setCommPathValuesTo(commPaths[1], 1,0,0,0);
commPaths[1]->hasFixedTiming = TRUE;
commPaths[1]->fixedFlightTime = 10; //all time is stated in (integer) units

done building netlist, return it

return netlist;
}

The macro that sets the connections inside a comm path struct

#define setCommPathValuesTo(commPath, fromElIdx, outPort, toElIdx, inPort)\
do{\

commPath->idxOfFromElem = fromElIdx; \
commPath->idxOfFromOutPort = outPort; \
commPath->idxOfToElem = toElIdx; \
commPath->idxOfToInPort = inPort; \

}while(0); //macro magic for namespace

Creating an element involves creating arrays for the in-ports and out-ports, then
configuring the in-ports. The out-ports are automatically filled in during simulation
start-up, by HWSim. The most interesting feature is that each in-port is assigned an
activity type, which all arriving communications trigger. During the simulation, each
incoming communication creates an activity instance, which points to this triggered
activity type. The behavior and timing of the instance are calculated by the behavior
and timing functions in the activity type. Notice that the activity type pointers are
taken from the netlist, so they have to be created before creating the elements.

HWSimElem *
createAPingPongElem(HWSimNetlist *netlist)
{ HWSimElem *elem;

elem = malloc(sizeof(HWSimElem));
elem->numInPorts = 1;

9

2 Commands and Usage

elem->numOutPorts = 1;
elem->inPorts = HWSim_ext__make_inPortsArray(elem->numInPorts);
elem->inPorts[-1].triggeredActivityType = IDLE_SPAN; //reset port
elem->inPorts[0].triggeredActivityType = netlist->activityTypes[PING_PONG_ACTIVITY];

return elem;
}

Creating an activity type involves setting the pointers to the behavior and timing
functions, which are defined inside a separate directory where all the behavior and timing
functions are defined. An activity may have behavior set to NULL, or timing set to
NULL, and may have fixed timing. The structure has flags to state the combination.

HWSimActivityType *
createPingPongActivityType()
{ HWSimActivityType *pingPongActivityType;

pingPongActivityType = malloc(sizeof(HWSimActivityType));

pingPongActivityType->hasBehavior = TRUE;
pingPongActivityType->hasTiming = TRUE;
pingPongActivityType->timingIsFixed = TRUE;
pingPongActivityType->fixedTime = 10;
pingPongActivityType->behaviorFn = &pingPongElem_PingActivity_behavior;
return pingPongActivityType;

}

2.3 Activities, Behavior, Timing, and Communications

2.3.1 ActivityType and ActivityInst

Not all activities have both behavior and timing. This leads to four kinds of activity:

behavior + timing: the normal case, representing behavior in the hardware

behavior only: used for bookkeeping in the simulation, such as dispatching to other
kinds of activity, as continuations of this one.

timing only: useful in network simulations, where there may be no behavior of an
element, but timing is a complex function.

neither behavior nor timing: used when only want the reception of the communication
to be noted by HWSim, and saved in the in-port. Will later be used by an activity
triggered on a different port. For example, flip-flops where the input is ignored
until the clock input triggers activity.

The kind of activity is set by the combination of flags inside the activity type structure.
Some activities perform internal bookkeeping for the simulation, or dispatch different
behaviors based on message contents. These have no timing. See the netlist creation
comments above to see the actual flags and setting them.

10

2.3 Activities, Behavior, Timing, and Communications

2.3.2 Behavior Functions and Ending Activities

All behavior functions take a ptr to the activity instance they are executing the behavior
of. The instance contains a pointer to the elem, and most behaviors will use the element’s
elemState field. It holds all the persistent state of the element, which remains between
activities.

Here is the behavior function from the ping-pong example:

void
pingPongElem_PingActivity_behavior(HWSimActivityInst *activityInst)
{ //NO_MSG is #define’d to NULL, and PORT0 to 0

HWSim__send_comm_on_port_and_idle(NO_MSG, PORT0, activityInst);
}

There are four ways a behavior can end:

end, no continuation:

HWSim__end_activity_then_idle(HWSimActivityInst *endingActivityInstance)

end, with continuation:

HWSim__end_activity_then_cont(HWSimActivityInst *endingActivityInstance,
HWSimActivityType *continuationActivityType)

end by sending a communication, with no continuation:

HWSim__send_comm_on_port_then_idle(void *msg, int32 outPort,
HWSimActivityInst *endingActivityInstance)

end by sending a communication, with continuation:

HWSim__send_comm_on_port_then_cont(void *msg, int32 outPort,
HWSimActivityInst *endingActivityInstance
HWSimActivityType *continuationActivityType)

Ending with a continuation means that a new activity instance is created. It’s
simulated-time starting point is the same as the end point of the instance being ended.
The call passes a pointer to an activity type, which is the type of the new activity
instance.

2.3.3 Activity Timing Functions

All activity timing functions take a ptr to the activity instance they are calculating the
timing of. The instance contains a pointer to the element the activity is in. The behavior
function is free to communicate to the timing function by leaving special data inside the
element state. The timing function might also simply depend on the current state of the
element.

Here’s an example:

11

2 Commands and Usage

HWSimTimeSpan
sampleElem_sampleActivity_timing(HWSimActivityInst *activityInst)
{

return doSomethingWithStateOfElem(sendingActivity->elem->elemState);
}

2.3.4 Calculating the time-in-flight of a communication path

The timing function for a communication path is similar to that of an activity. Except,
the timing might also depend on configuration data or state stored inside the comm path
struct, so that is passed to the timing function as well.

HWSimTimeSpan
commPath_TimeSpanCalc(HWSimCommPath *commPath, HWSimActivityInst *sendingActivity)
{ return doSomethingWithStateOfPathAndElem(commPath, sendingActivity->elem->elemState);
}

12

Bibliography

[1] ...

[2] ...

13

