
Position: Flexibility of Runtime Support Beats
Specific Parallelism Construct Support

Sean Halle
Open Source Research Institute

Email: sean.halle@osri.org

Abstract—This is a position paper, to provide food for thought
and debate. Even so, the ideas are extrapolated from published
work on runtime systems and hardware abstractions that have
been implemented and successfully demonstrated.

To bring parallel programming into the mainstream, it needs
to be productive, source code must port easily with high perfor-
mance, and parallel programming has to be favorable to industry
for adoption. In previous work, we took the position that to
attain all three, software should be organized into a stack, based
around specializationof source to target hardware. Each layer of
the stack has a role in the specialization process, which spans an
application’s lifetime from transform to hardware-specific form,
to installation, to runtime. In this view, specialization includes
the toolchain, hand-tuning, auto-tuners, multi-kernels, profiling,
and binary optimization. Here, we briefly restate the elements of
such a stack, and how it encapsulates and organizes these.

If the premise of such a stack is accepted, then in this
paper we take the position that hardware should support tightly
integrated firmware-based runtime systems rather than specific
parallelism constructs. This is a new category of firmware that
is tightly integrated into the processor pipeline and managed
by the OS. We describe hardware structures that support
such firmware, and allow traditional thread constructs, domain-
specific constructs, transactional memory, and even consistency
models to be implemented via such firmware. Such constructs
have extremely low overhead, as well as engage the language
runtime into pipeline-level hardware resource management.

I. I NTRODUCTION

Current parallel programming is blocked from mainstream
industry because it has lower productivity than sequential
programming, forces a rewrite of source for each new target
to get good performance, and disrupts the ways programmers
think and their workflow. All of which makes it too expensive.

Many believe a solution to productivity is domain-specific
languages. However, to be a real solution, a large number of
such domain-specific languages have to be created and ported
to each hardware target. Such creation and porting must be
done inexpensively due to the small user base of a language.

Solving performant-portability is more difficult. Such porta-
bility means source is written once, then automatically special-
ized to all hardware targets, so that it runs high performance
on each. To achieve this, the one source has to capture all
information needed by all specialization techniques for all
hardware, current and future.

Adoption by industry is the least research-oriented aspect,
but for parallel programming may be the most important. To be
adopted, a solution would have to be flexible enough to support
all the domain-specific languages, fit with any of the array of

programming styles and workflows used in the industry adopt-
ing, and offer smooth transition from current programming
practices to the new ones. It has to seamlessly work on both
current hardware and future parallelism-supporting hardware.

We term this the triple goal of: productivity, performant-
portability and adoptability for parallel software. Throughout
the paper, we tie specific details of our proposed approach to
these three goals.

One suggested solution to the triple goal is a software
stack that is based around specialization, and collects inde-
pendent, small, contributions to the stack, which collectively
perform the specialization process[3]. Productivity is solved by
efficient and practical support of domain-specific languages.
Performant-portability is solved by conveniently supporting
the full range of specialization techniques, and accumulating
them from many sources. Adoptability is solved by flexibility
to adapt to current and future hardware, with gentle transition
that is practical, cost-sensitive, and effort-reducing.

In this paper, if the premise of such a software stack
is accepted, and the premise that domain-specific languages
solves the productivity problem, then we propose that sup-
porting runtimes in hardware is better than supporting any
particular set of parallelism constructs, even ones as basic as
the Compare And Swap instruction or Thread constructs.

The reason is that specific constructs have nonuniform
performance when taken across languages, and so fail to sup-
port domain-specific languages. Such hardware will perform
slightly better than the proposed firmware approach on the
programming models that fit the hardware, but worse on all
others. This is in conflict with domain-specific languages,
which by their nature encompass a wide variety of constructs,
most of which won’t execute well on the direct hardware.

Specific constructs in hardware also have a chicken and egg
problem because they only give advantage for a few specific
languages. Unless those languages are dominant, the expense
of commercializing such hardware can’t be recovered. And
without a hardware support advantage, it is unlikely for a
subset ofparallel languages to gain such wide dominance.

In Section II we give details of the hardware we propose to
support firmware runtimes. In Section III we expand on the
software stack and how it fits with the runtime hardware and
how the two together support the three goals. In Section IV we
apply the proposal to the topics of interest of this workshop
to see if they are consistent and address the concerns. We
conclude in Section V.



II. W HAT PARALLEL ABSTRACTIONS SHOULD THE

HARDWARE PROVIDE?

Our position is that the hardware should not directly supply
parallel abstractions. Instead, it should supply a mechanism
that elevates the language runtime to a soft-extension to
the instruction set, making the runtime separate from the
executable and separate from the OS. Thus, parallel abstrac-
tions are implemented as firmware that extends the hardware.
With suitable support, many firmware-implemented parallel
abstractions would require only a handful of instructions with
a similarly low number of cycles of overhead.

This arrangement solves a number of problems currently
facing language designers and runtime implementers. First,
it makes all application-resident information available to the
runtime, and gives it control over the innermost level of
hardware, right down to swapping contexts in and out of
registers. Second, it increases practicality of domain-specific
languages, which is one main path to high programmer pro-
ductivity. Third it improves portability directly, and fits the
proposed software stack arrangement, providing a natural and
smooth transition from existing hardware to hardware with
such firmware runtime support.

A. Soft-extension of instruction set

Precedence for soft-extensions to instruction sets exists. The
Alpha chips from DEC executed complex VAX instructions by
switching fetch over to a special memory containing normal
Alpha instructions, which implemented the functionality.

Fig. 1. A specialswitch op-code is recognized by the decode stage,
and triggers fetch of instructions from firmware. The firmware instrs are
linked by the OS and implement the runtime behavior of a language.
Helper instructions accelerate common runtime operations, such as hash table
lookups, communication calculations, search for optimum, and so on.

An analogous approach is illustrated in Figure 1. Here, one
op-code is set aside as the “switch to runtime” operation. Its
execution causes instructions to switch to fetching from the
firmware. Information is communicated via register contents,
which point to data-structures that include a hardware defined
portion and a language defined portion.

This firmware was written by the language provider, so it
is separate from the executable. It implements the behavior of
parallelism constructs of the language.

Such an approach addresses security, portability, and effi-
ciency. It is secure because the OS controls the firmware. It
is portable because the executable only contains theinterface
to the constructs (implementation is separate). It is efficient
because the firmware runs in user-space, and switching to it

costs the same as acall . This also improves application
performance, because a firmware runtime has control over
low level behaviors such as hardware-supported swapping of
contexts and control of hybrid cache/scratchpad memory.

The firmware runtime receives application information in
the data-structures, such as construct semantics and informa-
tion extracted by the toolchain for the runtime. The firmware
runtime uses the application information to control swapping
execution contexts, initiating communications, and any other
resource management.

Portability improves because only theinterfaceto constructs
is encoded in the executable. Implementation is free to change
from one processor to another, or even from one level of a
machine’s hierarchy to another.

B. Communications via firmware

By removing communication from the executable and
putting it into firmware, both a portability benefit and a control
over hardware benefit are gained.

The portability benefit is realized when firmware becomes
the application gateway to communication. This lets paral-
lelism constructs be application oriented, merely implying
communications, without specifying or controlling communi-
cation details, which invariably imply hardware details.

The control benefit results when firmware controls activities
such as marshalling data and invoking the hardware to com-
municate it. The firmware runs in user-mode but is trusted
with hardware resource control, so it can do things like make
communication events trigger suspend and resume of tasks.

C. Communication via separate helper processors

Fig. 2. Communication is performed between local memory and remote
memories via a separate communication processor. This processor executes
firmware that is loaded under OS control. For example, it may run a standard
software cache or run scatter-gather code extracted from the application.

Controlling communication inside the firmware improves
the practicality of adding separate helper processors for com-
munication. These would overlap communication overhead
with useful computation, as illustrated in Fig 2. These pro-
cessors execute separate firmware, supplied either by the OS,
or as part of the executable.

A cogent example is an application with complex data
structures that are communicated between long running tasks.
During a task, some portion of the data-structure is bundled
up and sent to another task.

The language used provides constructs for rendez-vous style
send and receive, plus constructs that identify the bundle-data
and unbundle-data code. Send and receive are implemented



as part of the language, as runtime firmware. In contrast, the
bundle and unbundle code is extracted from the application by
the toolchain and packaged into the executable. During the run,
an OS call causes that bundle and unbundlecommunication
firmware to be linked into the communication processors.

When a task executes send or receive, the runtime firmware
swaps the context out, suspending the task, and replaces it
with a non-blocked task. Simultaneously, the runtime causes
the communication processor to execute bundle or unbundle
code. When communication completes, the task is unblocked.

This tight integration of communication with scheduling
of tasks is an example of application information driving
scheduling. It allows the firmware to decide which core to
assign a task to based on application code and input data,
while maintaining ultra low overhead.

Such bundle/unbundle doesn’t work as well in cases where
the data consumed has little predictability, or the application
doesn’t provide gather-scatter or bundle-unbundle information.
In this case, the OS can link standard software-cache firmware
into the communication processors.

Such a cache has the advantage of being able to swap out
tasks when it misses, which gives an efficient way to overlap
cache misses with useful work, without the area and energy
overhead of out-of-order pipelines. This requires the hardware
to make the cost of switching tasks be like that of a function
call, and the application to supply sufficient parallelism.

Another potential advantage is adjusting the cache charac-
teristics during the run to better match the application. The
characteristics can be measured, or the toolchain can insert
the results of analysis.

This would ideally be coupled with scratchpad memory that
can treat a section of memory as tags. The communication
processor is given control, to configure the tag memory, to
cause tag comparisons, etc. Previous work suggests that such a
software cache compares favorably with hard-wired caches[2].

D. Speculation and Fast Control Message Support

Hardware support for speculation will work especially well
with a firmware runtime coupled to a communication pro-
cessor. Transactional memory, thread level speculation, and
higher level speculative constructs could each be supported
by generic lower-level mechanisms, which are in turn invoked
by the communication firmware, as hinted at by Carter[1].

This arrangement isolates hardware from the language con-
sistency model and execution model. There should no longer
be a large penalty for mismatch. To get this decoupling,
hardware is simplified, by factoring the semantics out.

Fig. 3. Tag memory and tag processing are added to local memory. The tags
have an extra field used by tag processing to filter lines.

Fig 3 shows a step towards such a refactoring. Hardware
support is added in the form of tags plus processing, which can
be used for check-pointing, sand-boxing, and speculative tie-
points. They don’t imply application visible semantics. Rather,
they are used inside the firmware to implement semantics
like transactional memory, thread-level speculation, and con-
sistency models such as acquire-release, or flush-on-command.

For example, for check-pointing, the tags are just as in
caches, but an additional field holds a check-point number.
Writes are only performed to lines with the same check-point
number, and if none exist, a read is performed, of either
the most recent previous check-point or fresh from remote
memory. The hardware supports sending and comparing lists
of lines with the same check-point number, as well as sending
only lines from a particular checkpoint. This efficiently sup-
ports Thread-Level Speculation, with rollback and commit.

Sandboxes use the same hardware, except instead of storing
the check-point number, the extra tag field holds the sandbox
ID. For transactional memory, each transaction started gets its
own sandbox ID. This supports the TCC style transactional
memory implementation[6].

Checkpoints may also be used to support shared-memory
style consistency models, but speculatively. New check-points
are periodically generated, while previous ones are examined
for conflicts. Examination takes place in the communication
processors, supported by hardware for comparing lists of tags.
Conflicts cause rollback and restart, with updated state from
one of the conflicting local memories.

Such hardware can also be used to turn off the tight
consistency of current snooping based protocols for the bulk of
computation, saving time and energy for the code that doesn’t
need it. Such consistency is only enabled for a few specialized
portions of code, those that use shared variables as control
messages, such as in software based mutex algorithms.

Another alternative is to only update shared memory when
synchronization constructs imply handoff of ownership. This
uses the tag hardware to track individual objects or data struc-
tures. The synchronization construct in the runtime firmware
triggers the communication firmware to update all objects on
the core that is gaining ownership, from modifications made on
the core giving up ownership. The tag-processing comparison
functions make this fast and efficient. This not only eliminates
the time and energy lost to snooping and directory protocols,
but also simplifies the programming model and removes
nonportable shared-memory code from executables.

These approaches rely upon having fast control messages
that communicate things like lists of tags. Fast control mes-
sages allow each core to have its own runtime, with purely
local state, which is the highest performance runtime approach.
They use the high speed control messages to communicate
constraint updates, explicitly send tasks to load balance, etc.

Such internal-to-runtime messages have only small amounts
of data, but their latency is crucial to the runtime’s responsive-
ness. A slowly responding runtime will leave its core idle more
often, because the rate of handling internal bookkeeping about
tasks is slower than the rate of finishing those tasks. It is in



this case that fast control messages become crucial[8].

E. Example

To illustrate such hardware in action, we walk through an
application binary as it invokes the “acquire mutex” paral-
lelism construct:

a) setup and switch:At the appropriate place in the
binary, instructions load one register with the pointer to a
mutex structure, and another register with the pointer to the
virtual processor (VP) requesting the mutex lock. Next, the
switch instruction executes, which switches fetch over to
the firmware of the runtime, while saving the stack and frame
pointers into the data-struct of the requesting VP.

In this example, the hardware specifies a “virtual processor”
(VP) data structure. The first locations make up a hardware
defined portion that theswitch instr automatically manages.

b) runtime internals:After switch , runtime code exe-
cutes from the protected firmware. The code for mutex acquire
expects a pointer to a mutex struct to be in a particular register,
checks the “current owner” field, and if empty writes the
pointer to the VP (held in another register) into it. It then
marks the VP as unblocked. Similarly, if the mutex is already
owned, it places the VP into the mutex struct’s queue, where
it remains blocked.

Most importantly, if the mutex is already owned, the runtime
swaps the requesting VP out from the hardware context
(register set). It swaps in an unblocked VP.

The execution time of this can be on the order of 10 cycles.
Such speed requires hardware support for swapping VPs in
and out, such as set aside cache or scratch-pad memory with
a wide port to registers, and speculative access to the mutex
data-structure. This makes all memory access local and fast.

Speculative accesses would be verified while computation
continues. If memory consistency is performed only upon
command of the runtime, and communication hardware sup-
ports check-point and rollback, then application work can
continue without speed penalty, except in case of rollbacks.

Notice that no atomic memory instructions have been used.
Further, the application binary contains onlyinterfaces to
high level constructs. All operations have been local and fast,
despite maintaining global consistency of global address space.

III. W HICH SHOULD BE THE RESPONSIBILITY/
FUNCTIONALITY OF THE PROGRAMMER, THE RUNTIME

SOFTWARE, AND THE HARDWARE?

According to the cited work on portability, responsibilities
naturally break down along the lines of a software stack[3].
The goal of which is to support specialization, the process
of transforming the original source into a form that is highly
efficient on the target hardware. This is the heart of portability.

Each layer of the stack has some role in the specialization
process, while the application, on top, provides the information
that the rest of the stack needs while performing the spe-
cialization. Ideally, the application must not expose hardware
assumptions nor hinder specializations for particular targets.

Fig. 4. The layers of the previously proposed software stack.

The layers and interfaces are seen in Fig 4. On top are
the applications, which use constructs to capture specialization
information used in the rest of the stack. Languages make the
interface between applications and the toolchains that generate
the executables. The most important interface is between the
executables and the runtimes. With this proposal it will be
the switch instruction plus hardware defined and language
defined data-structures that get passed between. The runtimes
rest on top of a layer of hardware abstraction implementations,
which exports an interface that simplifies runtime creation. The
abstractions are then implemented in terms of the Instruction
Sets of multi-core chips.

Productivity is solved by making domain-specific languages
simple to create, easy to port across hardware, and high per-
formance. The application programmer only sees application
relevant concepts, reducing their learning curve and matching
their mental model to the language. The domain-specific
parallelism constructs can be provided either embedded-style
as library calls, or with compiler support.

For portability, the languages also design their constructs to
avoid hardware implications. Languages that have succeeded
include CnC[7], WorkTable, and HWSim. Such constructs are
implemented mainly by the runtimes, and occasionally by
the toolchain. Using such constructs doesn’t by itself ensure
portability, but it goes a long way towards that goal, by
removing the largest source of hardware-specific information.

Applications on top of such a stack should not use shared
variables without protecting access via a language construct.
This precludes “roll your own” synchronizations, or commu-
nications implemented in the app by using shared variables.

The proposed hardware naturally supports this stack. The
hardware abstraction, used to simplify runtime creation, is
currently implemented as a software layer, including assembly
primitives for switching between application and runtime. The
proposed hardware itself implements much of this abstraction.

Large portions of the language runtime code that currently
exists for multi-cores should work verbatim with the new hard-
ware support. Only portions that take advantage of acceleration
should need modification.

This helps adoptability of the new hardware, by providing a
seamless migration from current hardware to the new, without
modification of application code. And, being able to repurpose



runtime code to the new hardware also eases adoption of it.
Contrast this with hardware that directly implements spe-

cific parallelism constructs. The abstraction can still be sup-
plied for it, but the construct hardware is only used when
running code written in a few languages. It fails to equally
support domain-specific languages, and so harms productivity.

At a minimum, specialization needs constructs that identify
the tasks, the constraints on scheduling the tasks, and the data
to be communicated between tasks. However, high quality
specialization requires additional “helpers” [3]. These enable:
1) modifying the layout and order of access of data, 2)
modifying the size of a task, both the data consumed and
code executed by it, and 3) predicting both execution-time and
data consumed by each task. An example is DKU[4], which
provides task-size-modification helpers.

Helpers related to data consumed by a task and layout di-
rectly feed into communication firmware. Either the toolchain
generates firmware from construct semantics, or constructs
identify the application code to be used as communication
firmware. Domain-specific constructs must be designed to
capture the information, and convenient for the tools to extract.

One last concern is the creation of the many firmware
runtimes. The hardware abstraction interface must uniformize
them, to reduce the work of creating one for a particular lan-
guage. An example abstraction is Virtualized Master-Slave[5].

IV. SPECIFICTOPICS OFINTEREST

Now that a position has been stated, let us see how it applies
to the topics of interest, to check consistency and usefulness.

c) enabling future parallel programming models:Essen-
tially all current and foreseeable future parallel programming
models should be supported in a fairly uniform way. The
stack approach makes creating new models fast and easy.
Embedding the switch mechanism in the pipeline, and support-
ing common runtime constraint management and assignment
operations like hash tables and context swapping ensures low
overhead. In addition, bringing application information into the
lowest hardware level of resource management enables high
performance scheduling.

d) innovative architectural execution models:Innovative
architectural execution models are more practical when iso-
lated from the programming model. Theswitch instruc-
tion provides this decoupling, and gives hardware freedom
to explore, without code legacy constraining it. However,
high speed internal-to-runtime messages, speculation support,
and decoupled communication processors may be considered
elements of an architectural execution model we advocate.

e) novel memory hierarchies:One suggestion is coupling
memories to their own communication processor that performs
all movement of data to remote memories. Another is make
memories be configurable, with tag fields and hardware to
support sending lists of tags that have a given ID, and checking
tags against such a list. These support transactional memory,
thread-level speculation, acquire-release, and speculative vari-
ants of sequential consistency, with the overhead overlapped.

f) simplified and scalable memory models:A wide vari-
ety of memory models can be implemented in firmware with
the proposed speculation hardware, including simplified high
level models implied by domain-specific constructs. Specu-
lation and the linkage to context-swapping allows memory
consistency overhead to be overlapped with work. Scalability
is then inside the communication firmware algorithm.

g) high level constructs for on-chip communications:
Essentially any high level communication construct can be
implemented in firmware of the communication processors.
Further, linkage between communication processor and work
processor brings pipeline-level hardware control to the high
level communication constructs.

h) future directions in programming massively parallel
systems:We believe future algorithms should divide data and
computation in tasks into a fractal-like hierarchy. Each level
of task should look the same in terms of communication and
computation activity, so that task communication scales as
availability in the hardware does, as the hierarch is traversed.

This means programmers need to find hierarchical approx-
imations to problems, where a task in one level accumulates
results of lower levels. The stack enables a hierarchy of
runtimes that matches hardware and application hierarchies.

i) potential bottlenecks for future parallel systems:
We believe the amount of parallelism in code will be the
bottleneck. Communication-to-computation ratio of hardware
is worsening, and memory size is growing more slowly
than computation rate or hardware parallelism. Hence weak
scaling doesn’t apply. The code has to change, to find smaller
work-units within it, else amount of parallelism will be the
bottleneck, leaving processors idle.

The stack makes such code performantly-portable.

V. CONCLUSION

The paper has supported the position that hardware should
support firmware runtimes instead of specific parallelism con-
structs, by showing the benefits of low level hardware man-
agement being brought into user-space with an OS managed
but language supplied runtime firmware.

REFERENCES

[1] J. B. Carter, C.-C. Kuo, and R. Kuramkote. A comparison of software
and hardware synchronization mechanisms for distributed shared memory
multiprocessors, 1996.

[2] Derek Chiou, Prabhat Jain, Larry Rudolph, and Srinivas Devadas.
Application-specific memory management for embedded systems using
software-controlled caches. InDAC, pages 416–419, 2000.

[3] Sean Halle. PStack home page, 2012. http://pstack.sourceforge.net.
[4] Sean Halle and Albert Cohen. Leveraging semantics attached to function

calls to isolate applications from hardware. InHOTPAR ’10: USENIX
Workshop on Hot Topics in Parallelism, June 2010.

[5] Sean Halle and Albert Cohen. A mutable hardware abstraction to replace
threads.24th International Workshop on Languages and Compilers for
Parallel Languages (LCPC11), 2011.

[6] Lance Hammond and et al. Transactional memory coherence and
consistency. ISCA ’04, pages 102–.

[7] Kathleen Knobe. Ease of use with concurrent collections (CnC). In
HOTPAR ’09: USENIX Workshop on Hot Topics in Parallelism, 2009.

[8] Chao Mei, Gengbin Zheng, Filippo Gioachin, and Laxmikant V. Kalé.
Optimizing a parallel runtime system for multicore clusters: a case study.
In The 2010 TeraGrid Conference, pages 12:1–12:8, 2010.


