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Abstract

The HotPar 2012 call for papers states that wide uptake
of high efficiency parallel architectures “requires new
parallel programming paradigms, new methods of appli-
cation design, new structures for system software, and
new models of interaction among applications, compil-
ers, operating systems, and hardware.” In short, a new
software stack, and a way to organize players in research
and industry to supply the pieces of the stack.

A recently proposed candidate for such a software
stack[5] relies in part on the assumption that a suitable
hardware abstraction exists for the bottom layer of the
stack. The abstraction’s main purpose is to reduce the ef-
fort required in the upper layers. It must reduce the effort
of creating language runtimes: by hiding details of syn-
chronization and communication; by regularizing imple-
mentation to simplify and encourage reuse across lan-
guages; and by reducing the number of runtimes needed
by collecting multiple targets below a single interface.
It must at the same time enable high performance, by
giving the language control over task placement and
exposing to the runtime’s scheduler the memory hier-
archy, communication characteristics, and other major
performance-related aspects of the hardware.

In this paper, we show that an abstraction called Virtu-
alized Master-Slave, or VMS [9] satisfies these criteria,
and we provide recent measurements to support the case.

1 Motivation
As stated in the call for papers, wide uptake of high effi-
ciency parallel architectures “requires new parallel pro-
gramming paradigms, new methods of application de-
sign, new structures for system software, and new mod-
els of interaction among applications, compilers, oper-
ating systems, and hardware.” Which are element of the
software stack, and normally supplied by multiple play-
ers in research and industry. The players need to be or-
ganized to supply the pieces of the stack.

The goal of the stack is to make parallel programming
as productive as sequential programming, and to make it
as portable onto new generations of hardware as sequen-
tial code.

Reduced cost of parallel software is one major benefit

of such a stack. Part of the cost reduction comes from
performant portability. This means code is written once
then run performantly across hardware targets, including
unknown future architectures.

A recent proposal for achieving this, named
PStack[5], calls for a software stack having a layer of
languages (toolchains) at the top, a layer of runtimes be-
low that, and a hardware abstraction layer at the bottom.

It is this bottom layer that we focus on in this paper.
We begin by giving context for the bottom layer with
more information about the software stack, in Section
2. We then explore the requirements for the layers in in
Section 3, and show how VMS satisfies the requirements
in Section 4. We then move to results, giving our exper-
imental setup in Section 5, and measurements in Section
6. In Section 7 we tie the elements of the paper together
in the conclusion.

2 Context: PStack
Many projects are attempting portability [10, 2, 4, 3, 1].
PStack differentiates itself in three ways: 1) it’s goal
is wider than most: (nearly) all-languages to (nearly)
all hardware 2) It’s approach is toorganize– industry
supplies the pieces of the solution, while PStack itself
only provides the interfaces and scaffolding, along with
the seed of a solution to start 3) PStack has unique ap-
proaches for the application interface and the hardware
interface that fill fundamental needs.

The general philosophy is that portability involves too
much effort to be solved by a single group. Instead, an
industry-wide effort is needed, where each player pro-
vides one small piece of the solution. This, though, re-
quires some way to organize it all, and modularize the
pieces.

PStack addresses this by defining a number of in-
terfaces, and providing tools to manage specialization.
These result in a simple, decoupled process for adding
new solution pieces. So, the solution can grow at its
own pace, accumulating the efforts of many.

2.1 PStack elements
As seen in Figure 1, at the top, a standard set of informa-
tion is defined, which must be gathered from the appli-
cation. Current languages don’t capture all the required



information. So PStack defines a set of constructs to be
added to a language to fill its gaps. The added constructs
are denoted “+P” appended to the language name.

In the middle, standard runtimes require too much ef-
fort to create, and discourage reusing schedulers across
languages. So PStack defines a hardware abstraction that
removes as much as possible from the runtime, including
concurrency in the runtime itself. The abstraction makes
the runtimes all have similar structure, which simplifies
reuse of complex scheduler code among languages.

At the bottom, performance of the runtime itself re-
quires intense low-level hand-tuning and debugging.
This is captured inside the implementation of the ab-
straction. It is done once for each hardware target, then
reused across the runtimes from all languages. So the
intense hand-tuning is taken out of the runtimes, in the
middle layer, while it benefits all languages and hence
applications in the higher layers.

2.2 How VMS influences the stack
VMS was chosen as the abstraction in the bottom layer.
However, VMS affects multiple interfaces and layers
of the stack. At the top, it determines the way paral-
lel constructs are embedded into base languages, and
how custom-syntax languages generate their runtime-
interactions. Next, between the top and middle, VMS
defines the interface for the language layer to talk to the
runtime layer. Then within the middle layer, VMS de-
fines two standard function prototypes, so that a runtime
consists of implementations of just these two functions.
Between middle and bottom, VMS defines a number of
services that runtimes in the middle can call, and also de-
fines the interaction between the VMS-implementation
and the two runtime functions.

3 Requirements
Although the paper focuses on the bottom abstraction,
its requirements are influenced by the layers above. So
we present a full picture of the requirements in the stack,
to give a complete picture for the bottom abstraction.

3.1 Top Layer: Language Requirements
The languages must be designed to capture all informa-
tion required to specialize the source for high perfor-
mance on any target hardware. A computation model,
called The Holistic Model[?], suggests that such a
canonical set of information exists.

PStack proposes to develop the constructs that gather
the canonical information set, where some constructs
are in the form of specialization helpers such as task-
resizers and layout modifiers. The application imple-
ments the specialization helpers, thereby encoding in-
formation about data structures and how to manipulate
them. The seeds of such an approach were laid with

work on DKU[7], which demonstrated the success of
task-resizing constructs.

PStack also calls for the use of the BLIS[6] approach
for managing multiple toolchains, where each toolchain
specializes to a different target. The management covers
the install process, during which the correct toolchain
output is paired to the installation target. Further special-
ization can thus be naturally added during installation,
when exact hardware details are known. If required, run-
time tuning and optimization also fit naturally within the
approach.

3.2 Middle Layer: Runtime Requirements
Below the top layer, a collection of runtime systems acts
as a sort of cross-bar switch, connecting the languages
above to the hardware abstractions below. Such a “cross-
bar” switch made up of runtimes implies a large number
of runtimes.

To be practical, the number of runtimes must be re-
duced; the effort of creating one must be reduced; and
reuse of sophisticated runtime code must be encouraged.

3.3 Bottom Layer: Abstraction Require-
ments

The primary purpose of the bottom abstraction is to re-
duce the effort of creating the runtime layer.

• The abstraction must hide details, making multiple
hardware targets present the same interface and use
a common runtime.

• The abstraction must hide low-level tuning of the
runtime itself, like synchronization-related tuning.

• The asbstraction must provide common services,
such as handling internal synchronization of the
runtime, creation of tasks, communication, etc.

• The abstraction must create uniform patterns for
runtime implementation, making reuse between
runtimes more practical and reducing the effort of
making multiple runtimes.

However, the abstraction must not hideapplica-
tion-performance-critical information from the runtime,
which holds the scheduler that decides when tasks be-
come ready and where to execute them. The schedul-
ing choices need to know the communication paths and
memory pools in the hardware, along with latency, band-
width, capacity and computation rate.

A single abstraction can’t both hide details and expose
those required by the runtimes to attain highapplication
performance. Instead, PStack calls for a family of ab-
stractions, one for each major type of architecture, in-
cluding a “hierarchy” abstraction used to glue together
heterogeneous hardware. In each, only the details criti-
cal to application performance are exposed to the sched-
uler in the runtime, thus keeping the number of abstrac-



Figure 1: Depiction of PStack, with layers named on the left, and interfaces between layers named on the right. At
the top are toolchains plus specializers, in the middle are runtimes connecting languages to hardware, and below that
are hardware abstractions that collect similar hardware below a single interface and simplify runtime implementation.

tions needed manageably small, on the order of tens in
total.

4 Relating VMS Details to Requirements
Given the requirements, how does VMS meet them? We
given more detail on VMS, at each place it affects the
stack, and show how the details satisfy the requirements.

4.1 Top-layer
With VMS, a language is implemented as either a col-
lection of wrapper-library calls embedded into a base
language, or as custom syntax. The wrapper-lib func-
tions call a primitive supplied by VMS that suspends the
virtual-processor animating the call, and sends a request
to the runtime. This same VMS primitive is also used
to implement custom syntax, inside the compiler. Thus,
the VMS primitive is the means for the language layer
to interact with the runtime layer.

VMS is invisible to the application, only language
constructs are visible – either wrapper-library calls or
custom syntax. From the application-programmer point
of view, even an embedded parallelism construct looks
like a function call, albeit the data-structure of the
virtual-processor animating the code has to be passed as
a parameter to the wrapper-lib call.

4.2 Interface from top to middle
The interface between application-executable and
language-runtime is fixed, as the VMS-primitive that
sends a request to the runtime. Even though PStack
allows executables to be modified during installation
or even runtime, via BLIS management of auto-tuners,
multi-stage compilers, or binary re-writers, the VMS-
primitive still must be used for the executable to interact

with the runtime.
Such a standard interaction mechanism serves not

only to modularize the stack, cleanly separating runtime
from toolchain, but also to decouple executable from
VMS implementation. The VMS primitive is naturally
a custom instruction, but can also be, a trap to the OS, a
message sent on a port, or a function call – given appro-
priate executable modification under BLIS.

4.3 Middle layer

VMS causes the middle-layer portion of a runtime to be
implemented as two functions. The first is the request-
handler, which is the part of a scheduler that handles
constraints. It determines which work units (tasks) are
ready to be animated (executed). The other function,
sched-assigner, assigns ready work to hardware. This
provides uniform patterns for the runtimes.

When a request is ready for the runtime, VMS calls
the request-handler function, and when hardware is
free for work, VMS calls the scheduler-assign function.
Thus, the language portion of the runtime is passive.

By keeping control-flow inside VMS, the language-
supplied portion of the runtime is simplified. Con-
trol flow includes any concurrency, and so is inside the
VMS-implementation. Hence, the language-supplied
runtime functions are sequential code, even though they
implement thesemanticsof language-level synchroniza-
tion constructs. This simplifies runtime implementation.

This structure is also the reason VMS encourages
reuse of scheduler code. Scheduling is sub-divided into
distinct modules: constraint-management (IE enforcing
dependencies); and assigning work to resources. The as-
signment module is especially straight-forward to share
between languages.



Because application performance is most strongly in-
fluenced by communication within the hardware, the as-
signment module is critical. For high performance, it
also tends to be complex. Thus, simple reuse of it is a
significant benefit.

4.4 Interface from middle to bottom

VMS’s plugin API is the interface between the runtime
and the bottom abstraction-implementation. The API
has calls to register language-supplied runtime functions
with the bottom abstraction, as well as support services.

Reduction of the number of runtimes is accomplished
this way. Hardware targets with similar structure present
the same interface, requiring only one runtime.

Only structural elements that affect assignment
choices are exposed in the API. For example, memory
hierarchy is exposed as a VMS-defined data-structure
made available to the sched-assign function. The details
in the data convey the connectivity, communication, and
sizes, which the assigner may use to optimize choices.

4.5 Bottom layer

The bottom layer consists of implementations of the
VMS API and VMS primitives used in the upper lev-
els, as well as the control-flow of the runtimes. Each
hardware platform has its own implementation, allowing
low-level hand-tweaking. This effort is performed once
per hardware target, so is amortized across applications.
Pulling this tuning below the interface also simplifies the
runtime-portion in the middle layer.

5 Experimental Setup

The experiments to measure VMS overhead were run
on three machines: a one-socket 2 core 3GHz worksta-
tion (“1x2”), a one-socket 4 core SandyBridge 3.3GHz
workstation (“1x4”), and a four-socket by 10 core each
Westmere EX 2.4GHz server (“4x10”).

The code consists of two loops: the innermost is a
single task, while the outer repeats that task a number of
times. The inner does throw-away work entirely within
registers, where the number of iterations sets the amount
of work in the task. After the inner completes, a syn-
chronization is performed, which pairs each task to a
sync operation. The outer then repeats the sequence of
task-then-sync a large number of times to gain statistical
accuracy and dominate any other sources of overhead.

Two versions of the code were written: one that used
pthread, a second that used a VMS-implemented equiv-
alent called Vthread. Both have the same semantics,
differing only in the implementation of scheduling trig-
gered by the construct. Hence, any difference in execu-
tion time is due to the difference in scheduling overhead.

6 Results
The new experimental results given in this paper focus
on the overhead of the runtime, with the goal of show-
ing that a language based on VMS enjoys low overhead
compared to standard pthreads. We illustrate the amount
of overhead by plotting a curve whose shape is deter-
mined by the overhead.

The curve compares total CPU time to just work time.
The difference is the overhead of scheduling, which con-
sists of: switching from application to scheduler; updat-
ing the sync-construct state; choosing a new thread to
schedule; and deciding on which core to re-animate it.

The ratio of total CPU time to work time gets larger
as the overhead increases, raising overhead’s percent of
the total. When the ratio is exactly 2, the work time
exactly equals the overhead. Larger ratio indicates over-
head dominates, smaller indicates work dominates.

Hence, to find the size of the overhead, find the size
of task where the work in the task exactly equals the
overhead of scheduling the task. To do this, we plot the
ratio on the y axis and single-task-time on x axis. When
the ratio equals 2, the cycles of work in the task equals
the overhead of scheduling the task. So the overhead can
be read off the graph, as the task-size at the y=2 point.

6.1 Performance Results
We executed on each of three machines. On a given ma-
chine, we first executed the pthread version, then the
Vthread version, with a variety of numbers of threads.
Varying the number of threads shows the effect on
scheduling time. For a given machine, both sets of
curves are plotted on the same graph, to make direct
comparison easy.

Figure 2 shows results for the 1x2 machine. The
curves for Vthread cluster together in the lower-left, in-
dicating that overhead is smaller than for pthread. The
tight clustering means that overhead remains constant as
the number of threads is increased.

The values for overhead per task is read off the graph
by finding where the curve crossesy = 2. This shows
that Vthread has around 700 cycles of overhead, while
pthread starts at 3800 for 8 threads, goes up to 8200 for
32 threads, and then into the tens of thousands for 128
threads. Not shown is the curve for 512 threads, which
has more than 100,000 cycles of overhead.

Figure 3 shows similar characteristics on the 1x4
SandyBridge machine.

However, things change dramatically on the 4 socket
by 10 core-each Westmere machine, seen in Figure 4.
Here, inter-socket communication dominates, and VMS
gains orders of magnitude advantage. For one thread per
hardware context, Vthread’s overhead is around 1500
cycles, while pthread starts at around 50,000 and goes
up from there.
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Figure 2: ExecutionTime
WorkTime vs TaskT ime on the 1x2 ma-

chine. It shows results for Vthread and pthread on the
same axes, for 8 through 512 threads. The Vthread
curves cluster, appearing as the bottom-most, while the
pthread curves for 8, 32, and 128 are above it. The re-
sults for pthread with 512 threads land outside the plot.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1000  2000  3000  4000  5000  6000  7000  8000

R
at

io
 o

f T
ot

al
 E

xe
cu

tio
n 

to
 T

ot
al

 W
or

k

Cycles in one Task

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1000  2000  3000  4000  5000  6000  7000  8000

R
at

io
 o

f T
ot

al
 E

xe
cu

tio
n 

to
 T

ot
al

 W
or

k

Cycles in one Task

pthreads
8 Threads

32 Threads
128 Threads
512 Threads

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1000  2000  3000  4000  5000  6000  7000  8000

R
at

io
 o

f T
ot

al
 E

xe
cu

tio
n 

to
 T

ot
al

 W
or

k

Cycles in one Task

Vthread
8 Threads

32 Threads
128 Threads
512 Threads

Figure 3: ExecutionTime
WorkTime vs TaskT ime on the 1x4 ma-

chine. The results are similar to Figure 2.

The implementation of VMS is different on this ma-
chine than the single-socket ones, and demonstrates the
effectiveness of pulling hardware details below the ab-
straction.

When using the single-socket implementation on the
4x10, the large number of cores and inter-socket com-
munication times causes excessive contention. We
solved the problem for the 4x10 machine with an
increasing-random-backoff approach. It reduces over-
head by an order of magnitude on the 4x10.

Without an abstraction like VMS, the language imple-
menters would have to discover and solve such problems
separately for each language on each machine. Because
this required several weeks, the use of advanced tools,
and detailed knowledge of the hardware, the savings for
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Figure 4: ExecutionTime
WorkTime vsTaskT ime on the 4x10 ma-

chine. The Vthread results are difficult to see, at the bot-
tom of the plot, while the pthread results appear in the
middle. The runs start at 80 threads, which is the number
of hardware contexts in the machine.

the language-runtime implementers is significant. This
is evidence of VMS’s ability to reduce middle-layer run-
time implementation effort.

6.2 Implementation Time Results

As seen in a previous paper on VMS[8], it makes run-
time implementation quick and easy. The results are re-
printed in Table 1 to support the claim VMS meets the
requirement of reducing runtime implementation effort.

From previous experience and informal discussions
with others, equivalently low-overhead tuned runtimes
would take several months. Similar time is also expected
to learn the code of a pre-existing multi-threaded highly
tuned runtime, then modify, debug and re-tune it.

Table 1: Person-days to design, code, and test each of
three sets of parallelism constructs. L.O.C. is lines of
(original) C code, excluding libraries and comments.

SSR Vthread VCilk
Design 4 1 0.5
Code 2 0.5 0.5
Test 1 0.5 0.5
L.O.C. 470 290 310

7 Conclusion

We showed that using VMS as the bottom hardware ab-
straction in a software stack pulls low-level tuning out of
the runtimes, reduces the number of runtime implemen-
tations, and encourages reuse of scheduler assignment
code across languages.
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