
FP7-ICT-2011-C STREP short proposal
07/03/12 [PStack]

Small or medium-scale focused research project (STREP)

Short proposal

ICT FET Open Call
FP7-ICT-2011-C

[PortabilityStack: A Software Stack for Productivity and
Performance-Portable Parallel Applications]

[PStack]

Date of preparation: 1/3/2012

Version number: 2

Type of funding scheme: Small or medium-scale focused research project (STREP), short
proposal

Work programme topics addressed: ICT-2011.9.1, FET Open

Proposal Abstract:
The productivity and efficiency of the global ICT industry, and by implication European ICT and its diverse

customers, is under threat from the challenge of transitioning to heterogeneous, highly parallel hardware as the
mainstream technology. The core need is a means to write parallel software once, productively, then have it
automatically run high performance on all available hardware platforms, especially heterogeneous ones.

Attempts to provide this have been too narrow in scope, focused on a single language or a single run-time,
or sub-set of hardware targets. The problem is larger than any one group can solve, requiring instead a new soft-
ware stack, from the hardware-interface up to the programming tools, which is cooperatively provided by many
players, each adding a small piece. In this way, many languages are supported, and the effort of supporting a
language on a machine can be reused by other languages, which makes such a stack practical.

Our proposal addresses this challenge by delivering the seed of such a stack, including the interfaces and the
process for independent players to update it with their own additional pieces. This will enable application
sources to be compiled and executed, without source modification, and with good performance across the full
range of current and, foreseeable, future hardware.

We are aware that this is a bold claim, which is considered beyond reach by many. However, this project
takes a new, collective, approach. We provide structure that makes it easy and clean for players across industry
to each supply one small piece of the solution, and our structure integrates them into a collective solution. To ac-
complish this, we will exploit two key advances: a recent theoretical model, used to design a set of portability
constructs to be incorporated into languages, and a recent promising parallel hardware abstraction that provides
an organizing principle and enables reuse. These are further augmented by a toolchain management approach,
which makes it practical for 3rd parties to add new performance tools to the stack.

The seeds of each piece of the stack have been demonstrated by one partner or another. In the project, we
will tackle the vision of creating an integrated whole from them, in a way that each part relies on and supports
the others, and encourages diverse groups add to the stack independently, organically growing the solution.

Proposal Part B: page [1] of [6]

FP7-ICT-2011-C STREP short proposal
03-08-2010 v1.1 [PStack]

Proposal
Section 1: Scientific and/or technical quality, relevant to the topics addressed by the call

The Need, which is to be Solved by the Proposal

The transition to highly parallel hardware as the mainstream technology has caused software to fall ever fur-
ther behind the increasingly diverse array of parallel hardware available. It is too costly and too difficult to re -
write code for high performance for each hardware target. This slows progress in every segment of industry,
given that all segments now have parallel hardware, from embedded devices to mobile devices to desktops to su-
per-computers. As a result, European industry as a whole is harmed by the growing gap between new hardware
and the ability and cost for applications to take advantage of it.

Despite the need to rewrite applications to efficiently use the new parallel hardware, this work has been
delayed in the hope that new languages and tools would emerge to lower the number and difficulty, of rewrites.
But economic pressure is forcing rewrites to happen anyway, using inefficient and non-portable techniques. The
result is both increased cost and a slowing of software improvement, across industries, which harms the eco-
nomy and delays important advances that would otherwise benefit European citizens. The problem only intensi-
fies as new chips such as the 10 core Pentium, SCC, and MIC are released by Intel, while Tilera releases its 64-
core chip, and AMD its new Fusion architecture.

The Nature of the Problem

The gap is due to infrastructure failing to adapt to the shift from single-processor to multi-processor and het-
erogeneous hardware. Previously, source code could take advantage of a new single-processor chip just by run-
ning the code through the new processor's development infrastructure (called a toolchain, and consisting princip-
ally of a compiler). But that isn't currently possible for parallel software. There exists no equivalent develop-
ment infrastructure that can automatically optimize code for the wide array of new parallel hardware.

On the surface, the problem is that application code exposes features of the hardware, so it has to be tuned
for each hardware target. But deeper down, the issue lies in the infrastructure, which supports parallel applica-
tions. Previously, the toolchain (compiler) was helped with the tuning process, because the hardware enforced its
own abstraction, making all processors look similar. An equivalent abstraction doesn't exist for parallel hard-
ware. In addition, the tuning of parallel applications requires more kinds of information than sequential lan-
guages to be captured. Hence, the infrastructure is starved of necessary input.

Productivity for parallel programming is widely considered to be provided by domain-specific languages.
But language development and research is hampered by each group having to supply its own infrastructure for
each language. The complex nature of parallel computation requires complex infrastructure, so this is non-trivial
effort. To be practical, infrastructure needs to be reused across languages. But no standard exists, nor has even
been proposed, for interfaces or other modularization that allows such reuse across languages and hardware.

Insights Relevant to the Problem

One insight as to how such infrastructure might be achieved is revealed by a survey of techniques used in
hand-tuning parallel code. The study suggests the existence of an invariant set of manipulations, which, if cap-
tured inside the infrastructure, would automate most non-algorithmic performance tuning.

In addition, a recent theoretical model has been discovered that exposes the relationship among application
features, scheduling, and hardware features. It identifies the underlying purpose of each type of manipulation,
and bounds the type and amount information needed from an application.

Together, these give a good understanding of the structure underlying specializing code to particular parallel
hardware. From that understanding, increasing clarity has been gained, which suggests a canonical set of in-
formation plus manipulations exists. These would enable near the best performance to be extracted, from a par-
ticular algorithm, on any of the known classes of parallel architecture.

Many of those required techniques already exist, but only in isolated tools that apply just to a narrow set of
applications, or a narrow set of hardware. Each of these tools fills-in a small portion of applications-times-hard -
ware combinations, so very few are actually used because of the impracticality of the dozens to hundreds of indi-
vidual tools with different formats and steep learning curves that have to be manually applied. If all were collec-
ted within an automated system, that would be a significant step towards the sought-after infrastructure. How-
ever, there currently exists no means for them to inter-operate. That would require an organizing infrastructure.

The Solution

What is needed, to realize the sought-after infrastructure, is first a way to capture the extra parallelism-re -

Proposal Part B: page [2] of [6]

FP7-ICT-2011-C STREP short proposal
07/03/12 [PStack]

lated information from the application; second an analogous hardware-abstraction that makes different parallel
hardware look similar; and third, standard interfaces to integrate and interoperate independently developed tools
and techniques. An infrastructure that embodies these will isolate application code from hardware, and encapsu-
late specialization of the application to hardware.

Such infrastructure will naturally take the form a software stack. At the top lie constructs to capture informa-
tion, below are the tools that use the information, and at the bottom is the hardware abstraction that genericizes
hardware. The tools layer uses the information, to map the application code onto the abstraction.

One twist, though, is the high diversity of parallel hardware. To keep high performance, the abstraction
can't hide performance-relevant aspects of the hardware. This forces more than one abstraction to exist: a separ-
ate one for each class of parallel architecture. Fortunately, only major architectural features need to be exposed,
such as shared memory vs distributed memory, memory hierarchy, vector capabilities, data layout requirements,
and so on. From initial studies, the final number of abstractions needed appears to be reasonable, from 8 to 10 in
total, due to composability, which covers heterogeneous hardware and multiple levels of hardware hierarchy.

Adopting multiple abstractions, for the multiple hardware-classes, adds another layer to the software stack,
made up of the runtimes. This layer acts as a switch-board, which connects the programming languages above to
the hardware abstractions below. A given language has a runtime for each class of hardware (kind of abstrac-
tion). Such runtimes encapsulate part of the specialization of source to hardware, because each runtime takes ad-
vantage of performance-related hardware features exposed in the abstraction it connects to. Recent experiments
have shown that the runtime alone can contribute several orders of magnitude of effect on performance.

The Key Elements of the Solution

The keys to such a portability stack are the portability constructs at the top and the hardware-abstraction at
the bottom, both supported by insights from the theoretical computation model. None of these elements exist in
current and past attempts to achieve performant-portability.

The constructs at the top fulfill the needs of transforms in the toolchain, as well as the needs of scheduling
and load-balancing in the runtime. Hence, all levels of the stack use information and patterns captured by the
portability constructs. Each hardware's toolchain and runtime uses these to make hardware-specific transform
and scheduling choices. For example, advanced high-performance compiler techniques, such as polyhedral, need
properties of the code being manipulated, and those properties are captured by the portability constructs.

An organizing principle is needed to give structure to the stack, and is supplied by the abstraction at the base
of the stack. Its job is to give a uniform view of the hardware, modularize runtime implementation, and standard-
ize communication between layers. It should expose only performance-relevant features, and provide standard
services to support synchronization, communication, and scheduling. The abstraction should make runtime con-
struction simple, fast, and modular, in order to minimize the work of connecting a language to new hardware, as
well as make practical the reuse of runtime technology between languages.

Differences from Other Approaches.

 At first blush, something like posix-threads or TBB seems to also be a hardware-abstraction, and an estab -
lished standard one, at that. However, they are more properly viewed as languages embedded into C. They don't
provide an organizing principle for a stack built above them, nor do they give language runtimes intimate control
over hardware, as VMS, to be used in this proposal, does. Finally, they have no features to reduce the difficulty
of runtime implementation, nor to modularize the runtime to make reuse practical. VMS excels, in a unique
way, at both those goals.

Additional Benefits of the Proposed Solution

Such a software stack reduces the disruption of introducing new hardware, and reduces cost for all players in
the software eco-system. When a new parallel chip comes out, the application is not again modified, because the
information needed for tools to specialize to the new hardware has already been captured by the portability con-
structs. This assertion is supported by results from the theoretical computation model. Only layers of the soft -
ware stack get modified, to take advantage of the new hardware: the hardware-abstraction at the bottom is imple-
mented for the new hardware; above that, new runtimes might be added to connect languages to the new hard-
ware; above that, the languages may tweak their toolchains to take advantage of specific hardware features. This
work takes place below the application, so it is reused by all applications. More importantly, it is done by spe -
cialists, so application programmers are insulated from hardware-related performance issues.

The organization encourages an eco-system, which collectively provides the pieces of the software stack and
maintains it. The layered arrangement isolates different expertise for each layer, while the standard interfaces,
provided by the VMS abstraction, and appropriate toolchain management, allow different players to easily co-
operate, with only minimal real-world coordination.

Proposal Part B: page [3] of [6]

FP7-ICT-2011-C STREP short proposal
03-08-2010 v1.1 [PStack]

 In the eco-system, each entity provides on expertise and one piece, which collectively form the stack.
Hardware manufacturers implement the abstraction on their own hardware, which collectively provides the bot-
tom layer. Language-development entities and third parties contribute runtimes, relying on the interfaces above
and below to isolate themselves from each other. Language developers then each focus on a certain application
domain, providing a domain-specific language that includes the PStack portability constructs, and toolchains. In
addition, performance-tool providers add specialized pieces to the toolchain layer. The modularity, standard in-
terfaces, and toolchain management allow any one piece to drop-in. This way third-parties, like research groups,
can freely add specialized tools to improve the toolchain and runtime under specific conditions.

The key to the viability of such an eco-system of independent real-world entities is the organizing principle
of the VMS-based abstractions, the standard interfaces derived from the VMS approach, and automated manage-
ment of the toolchains. These same things enable reuse of key runtime technology across languages, a natural
way for narrow focus but high performance tools to gain wide exposure and low-barrier to acceptance. They
will be hidden inside the toolchain layer, eliminating the practical difficulties currently blocking wide adoption.

This Project's Proposal

The aim of this project is to provide a working prototype of the portability software stack, as depicted in Fig-
ure 1. The portability constructs at the top will be refinements of initially demonstrated versions, and take ad-
vantage of recent theoretical models of parallel computation and compiler techniques to refine and expand on
those. In the toolchain layer, automated specialization to target hardware will be managed by the BLIS ap-
proach. The middle and bottom layers will take advantage of a new hardware abstraction, called Virtualized
Master-Slave (VMS), which has demonstrated the required properties. Partners with deep language experience
will extend existing languages with the new portability constructs, allowing development in existing base lan-
guages, to minimize changes to existing code.

Fig 1: The layers and interfaces of the portability software stack. Applications at the top are modified once, to use the
new portability constructs, then remain constant, while the stack adapts the source code to the hardware. The languages are
modified by adding portability constructs, as indicated by the “+P” designator in the language name. The constructs enable
the toolchain layer to extract application information and code-manipulators. It uses these to transform the application, then
passes it to the runtime layer. Each runtime further uses the information to fine-tune code to hardware characteristics, and to
schedule work onto the hardware resources. The abstraction hides low-level hardware details, allowing similar hardware
platforms to reuse the same runtime. The abstractions are designed to allow the same top-level portability constructs to work
across different memory-consistency models and hierarchies.

The research is ambitious, but the effort will be kept manageable by staging the effort, focusing first on the
abstraction and runtime layers, then advancing to toolchain efforts near the end, once a solid foundation is estab-
lished. This first-demonstration will aim for good performance, while establishing the path for toolchains to be
independently added, as the route to ever higher performance. The nature of the portability constructs, which
work together with the VMS interface, allow significant tuning to take place in the runtime and VMS itself, mak-
ing this a reasonable approach. Toolchain techniques will be investigated late in the project, including a survey
of existing high-performance toolchain and auto-tuning techniques. A report will be generated on ways to integ-
rate those into the portability stack, to encourage the originating groups to perform the integration.

Proposal Part B: page [4] of [6]

FP7-ICT-2011-C STREP short proposal
07/03/12 [PStack]

Selling Points of the Project

Such a software stack will be a radical departure from current research into portability. Researchers tend to
focus on solutions they can provide within a single group, normally with only a single language or narrow family
of hardware targets. The multi-entity eco-system approach of this proposal has not been previously investigated.
Yet, it makes the most sense, and the new breakthroughs on the theoretical model, initial portability constructs,
and hardware abstraction give it a serious chance of succeeding.

The project is ambitious, but tries to balance this by reducing risk by building on previous work. At the top,
the portability constructs start with the foundation laid by DKU, and will be informed by The Holistic Model.
Below that, the toolchain-layer employs the BLIS approach to fold-in advanced compiler techniques. It has pre-
viously demonstrated automation of toolchains that specialize single-source to multiple hardware targets, includ-
ing a heterogeneous hierarchy of machines. Below that, the middle-layer is made up of runtimes implemented as
VMS plugins. For the bottom-layer hardware abstraction, the proposal uses the Virtualized Master-Slave (VMS)
abstraction recently published.

We believe this goal falls outside a standard project, and that the subject is considered too far-reaching to
appear in a standard call, which suggests applying for the FET-Open call. We believe that despite its lofty goal
that it is sufficiently grounded to expect that it is indeed possible. With the broad impact and dramatic rewards,
we would be remiss if we failed to ask for funding to explore such a promising starting point.

1.1 Targeted breakthrough and its relevance towards a long-term vision

The project will deliver a working proof-of-concept portability software stack consisting of 6 languages aug-
mented with portability constructs, a toolchain layer automated by BLIS, a middle-layer that connects each lan -
guage to each hardware class, and VMS implemented on each hardware target. In addition, two hardware plat-
forms will be delivered: a distributed memory platform reusing existing work and an implementation of a low
power GPU currently being developed in another EU project. A benchmark suite will be delivered to test the
stack, covering both common code patterns and particularly difficult ones.

The languages delivered will be a Java based domain-specific language for semantic analysis, OpenMP+P
(where “+P” represents addition of portability constructs), MPI+P, Skeleton+P, SSR+P, and ResearchLang+P.
Each language will be delivered with toolchains that run within BLIS, and connect to the VMS plugins. A plu -
gin will be delivered for each pairing of language with hardware class, which will, in total, connect all languages
in the project to all hardware platforms, allowing all benchmarks to run on all hardware.

A diverse set of benchmarks will be chosen, according to an analysis using the theoretical computation mod-
el, and the expertise of the project partners. Most benchmarks will already have been implemented in a base lan-
guage, then during the project the portability constructs are added. Each benchmark will be demonstrated run -
ning on all hardware platforms, without further change to the source code, and with good performance.

The hardware targets will include both current and future-looking platforms, plus all connected together as a
heterogeneous cluster. The “current” platforms will be coherent shared-memory multi-core in several variations,
GPGPU co-processors, and the Cell Broadband Engine. Future-looking platforms will include the Tilera 64 core
chip, the Intel SCC chip, a distributed-memory many-core, and a heterogeneous distributed system. Lastly, all
those will be combined into a hybrid machine tied together via ethernet, as a separate hardware platform. This
demonstrates hierarchical heterogeneous portability using the stack.

1.2 Novelty and foundational character

The novelty is: the concept of providing an industry-wide, shared, portability infrastructure that enables
practical cooperation of many partners who each contribute a piece; the combination of a toolchain management
tool (BLIS) with a hardware-abstraction (VMS) where both are fed tuning information about the application by
co-designed portability constructs; the use and enhancement of the new theoretical model of parallel computa-
tion (The Holistic Model) to develop portability constructs; the new set of portability constructs; and the applica -
tion of the new hardware abstraction (VMS) as the organizing principle of a portability software stack.

Comparing to other projects for portable applications, they fall into one of three general approaches:
• Portability through a single language + toolchain: Sequioa, OpenCL, OpenMP, Galois, StarSs
• Portability through libraries plus runtime: SETJits, TBB
• Portability through static tools in combination with runtime: CARP, CnC
These others have a narrow focus, with either a narrow range of applications, or narrow range of hardware

targets, or both. They focus on only one part of the portability problem, with a stand-alone offering that doesn't
interface with other approaches. They don't modularize the specialization process, nor span multiple points in an
application's life-line. And they don't offer an organizing principle for multi-entity cooperation (eco-system).
None offer all three of: a very wide variety of applications supported, a very wide variety of languages/program-

Proposal Part B: page [5] of [6]

FP7-ICT-2011-C STREP short proposal
03-08-2010 v1.1 [PStack]

ming models offered, and very diverse array of hardware targets, all at the same time. Instead, each of these oth-
er approaches can be implemented in terms of Pstack, and would benefit greatly from it.

Specifically, the two main elements other approaches lack are a hardware abstraction with VMS's benefits,
and an equivalent general set of portability constructs, which supply specialization information. Some do have a
form of abstraction, but limited. Most have constructs intended to aid portability, but none have been guided by
a theoretical model with the power of the Holistic Model, and so their constructs fall short of being general.

Most importantly, no work has been published or funded on general infrastructure whose purpose is to act as
portability glue, organizing multiple languages onto multiple hardware, with pieces provided by multiple entit-
ies. The existing and known proposed portability work takes the approach of providing a stand-alone system, for
one language, library, or runtime system. This severely hinders reuse of the work. This vertical approach also
hinders an eco-system of cooperating players, because it was designed as a single system, without general inter-
faces for interaction between separate pieces.

Confusingly, early work claimed to be portability infrastructure, such as Globus, PVM, Tempest, and Grid.
The actual purpose of these approaches was to simplify the hand-tuning of parallel applications. Although they
act as a type of hardware abstraction, they only cover communication, without the kind of organizing principle
needed to be the base of a portability software stack. The hardware abstraction at the base must be confluent
with the portability constructs at the top, and be designed in accordance with basic portability principles, as
opposed to those referenced, which just provide convenient hardware patterns.

1.3 S/T methodology

Background on Starting Point Technologies

Portability constructs: The starting point for portability constructs is DKU, published in 2010. It provides
hierarchical division of work, and cleanly identifies units of work (tasks). They were demonstrated with auto-
mated specialization, using BLIS, which inserted hardware-specific runtimes. Both multi-core and a heterogen-
eous distributed cluster were targeted, achieving near ideal speedup, without modification of the source.

Additionally, construct work will start with constructs suggested by analyses performed with the Holistic
Model of Parallel Computation. It is a new theoretical model that is currently being researched. It indicates that a
canonical and finite set of information both exists and also fulfils the requirements for portability. It also gives
evidence that toolchains or runtimes alone, without such constructs to provide information, are unable to achieve
wide portability. It demonstrates which application-patterns must be captured in the language and used in
scheduling decisions, to gain portable high performance.

Toolchain layer: In order to gain the highest performance, advanced toolchain techniques must be incor-
porated, such as profile-driven optimization, auto-tuning, multi-versioned kernels, and hardware-targeted data-
layout transformations. BLIS is the starting point for this layer, having demonstrated running hardware-specific
toolchains and managing the multiple executables generated. It was published in 2010 with the DKU constructs.

Middle-layer: The middle-layer starting point is the VMS plugins, which have already been demonstrated
connecting 4 languages to 3 hardware platforms.

Base-layer: The base layer starts with the VMS abstraction, published in 2011.
Full Stack: The starting point is the eco-system concept published in 2011, based on the VMS abstraction.

Addressing the gap between starting point technologies and the deliverables

Portability Constructs: DKU constructs exist for platforms with, coherent memory multi-core, distributed
memory, and heterogeneous systems. They enable general, hierarchical division of tasks, when the tasks don't
communicate. These will be extended to add communication among tasks, and constructs for prediction of data
footprint, execution time, and manipulation of data layout. The extensions will be guided with theoretical results
from the Holistic Model to ensure applicability to future architectures.

Toolchain-layer: Will start with existing BLIS automation, and be extended to cover the six languages in
the project. Simple tools will be added to make BLIS more robust and convenient. It specialize both by passing
portability construct information to the runtimes, and by invoking toolchains, which use portability construct in -
formation to manipulate code.

Middle-layer: Will use existing plugins for SSR, Cilk, and HWSim as models to guide plugins for the pro-
ject languages. Each hardware target will have a plugin made for it, including distributed-systems, GPUs, and
the Java Virtual Machine (JVM), which has support for the portability constructs defined during the project. In
the later stages of the project, once all are working, will explore performance enhancements to the runtimes.

Base-layer: Start with existing VMS for coherent memory multi-core hardware. Define additional VMS in-
terfaces to cover distributed-systems, GPUs, the JVM, and hierarchies. In the later stages of the project, explore
performance-enhancing extensions to the interface, such as dialogue between plugin and VMS during scheduling
decisions and task-tuning decisions.

Proposal Part B: page [6] of [6]

